Bulletin of the Seismological Society of America, Vol. 72, No. 3, pp. 705-727, June 1982

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF FAULT
DYNAMICS: RECTANGULAR FAULTS WITH FIXED RUPTURE
VELOCITY

By STEVEN M. DAY

ABSTRACT

We analyze three-dimensional finite difference solutions for a simple shear-
crack model of faulting to determine the effects of fault length and width on the
earthquake slip function. The fault model is dynamic, with only rupture velocity,
fault dimensions, and dynamic stress-drop prescribed. The numerical solutions
are accurate for frequencies up to 5 Hz, and are combined with asymptotic
results for shear cracks in order to characterize the slip function at higher
frequencies.

Near the hypocenter, the slip velocity exhibits a square-root singularity whose
intensity increases with hypocentral distance. At distances greater than the fault
width, w, growth of the velocity intensity ceases, and the slip function becomes
nearly invariant with distance along the fault length. Closed-form expressions
are developed for the dependence of static slip (s.), slip rise time (T;), and slip
velocity intensity (V) on fauit geometry. Along the center line of a long, narrow
fault, at hypocentral distances exceeding w, these expressions reduce to s.. ~
wA7r/p, Ta= 0.5 W/vg, and V =Jw/2 vr At/p, where Ar is the dynamic stress
drop, u the shear modulus, and vg the rupture velocity.

The numerical results imply that uniform-dislocation kinematic earthquake
models in which slip is represented by a ramp time function will underpredict
high-frequency ground motion relative to low-frequency ground motion. A further
implication of the numerical solutions is that the nature of inelastic processes at
the advancing edge of a long fault will depend on fault width, but will be
independent of rupture length.

INTRODUCTION

Deterministic simulation of earthquake ground motion has played an increasingly
important role in seismology and earthquake engineering in recent years. For
example, ground motion simulation has been used recently as a tool for developing
engineering design motion criteria (Wiggins et al., 1978; Apsel, 1979). Such simula-
tions require theoretical models for both the source process and the propagation
and dissipation of seismic energy. While ground motion simulations have been
undertaken using rather rigorous theoretical methods to model anelastic wave
propagation from source to site, including the effects of depth-dependent geologic
structure, the earthquake source itself is usually specified on largely intuitive
grounds. The displacement-discontinuity time history (slip function), by means of
which the earthquake source is represented, is generally prescribed without rigorous
consideration of fault dynamics.

Following Haskell (1964, 1969) and Savage (1966), most studies have represented
the earthquake by a slip function which is spatially uniform over the fault surface
and has some simple time dependence, usually that of a finite-duration ramp. Simple
kinematic source models of this type have proven useful for representing low-
frequency (less than about 1 Hz) characteristics of earthquake ground motion. For
example, Bouchon (1979) used a uniform dislocation of ramp form in combination
with a layered earth structure to model the station 2 velocity and displacement
recordings of the 1966 Parkfield earthquake. However, high-frequency (1 to 20 Hz)
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ground motion, which is usually of primary engineering concern, is highly sensitive
to the specification of the source process. The analysis of Madariaga (1978), in
particular, underscores the inappropriateness of the uniform-slip kinematic models
for synthesizing ground motion with wavelengths much shorter than the fault width.

Closed-form theoretical solutions describing the slip function are available only
for the most idealized dynamic shear-crack models of earthquakes. Restricting
consideration to three-dimensional analyses, perhaps the most useful of such ana-
lytical results are the solutions of Kostrov (1964) and Burridge and Willis (1969).
The former gives the slip history on a circular shear crack which initiates at a point
in a prestressed whole space and grows at a fixed rupture velocity without stopping;
the latter extends Kostrov’s result to the case of an elliptical shear crack. These
self-similar solutions are characterized by square-root singularities at the crack edge
in both shear stress and slip velocity, and the intensity of these singularities grows
as the crack dimension increases. While these analytic solutions are very useful for
interpreting the results of more complex numerical studies, they cannot account for
effects associated with the stopping of rupture growth and the ensuing arrest of slip.

Madariaga (1977a) used two-dimensional analytical results, notably those of
Kostrov (1966, 1975) and Fossum and Freund (1975) to characterize the slip-velocity
singularities associated with the starting and stopping of ruptures. He then applied
a representation theorem, together with Keller’s (1962) geometric theory of diffrac-
tion to construct a high-frequency approximation for the radiation from shear cracks
in three dimensions. This analysis yields expressions for the radiation from a discrete
jump in rupture velocity. The solution involves a stress intensity factor which
depends on the three-dimensional geometry of the fault as well as its stress anc
rupture history, and a second factor which depends only on the instantaneous jumy
in rupture velocity along the crack edge. The solution in this form provides
considerable insight into the process of high-frequency generation, although to full;
characterize the stress intensity factor and rupture velocity, a complete solution tc
the three-dimensional dynamical problem would still be required.

In general, numerical methods are necessary to solve the three-dimensiona
dynamic problem of a fault which stops. Several studies have addressed this problem
with the approximation that rupture velocity is specified a priort. This fixed
rupture-velocity fault model has been studied for faulting confined to a circula
region (Madariaga, 1976; Das, 1980), a semi-circular region (Archuleta and Frazie
1978), and rectangular regions (Madariaga, 1977b; 1979; Day, 1979; Archuleta an
Day, 1980). Day (1979) and Das (1981) have studied rectangular faults in whicl
rupture velocity is derived from a fracture criterion (spontaneous rupture). Thes
numerical solutions demonstrate that edge effects associated with the narro
dimension of the fault substantially influence the slip function, controlling static sli
and slip rise time.

In this study, our objective is to provide an improved understanding of thre
dimensional geometrical effects governing slip functions. The study employs thre
dimensional finite difference solutions to the dynamic fault problem in a who
space. On the basis of the numerical solutions, closed-form approximations a:
derived for the static slip and rise time predicted for rectangular faults. Thes
quantities are measures of the low- to intermediate-frequency content of the sl
function. A particular emphasis of this study, however, will be to quantify the hig
frequency behavior of the slip function, which has been largely unresolvable fro
previous numerical studies of earthquake dynamics. It is the high-frequency cha
acter (greater than 1 Hz or so) of the slip function which is of primary importan
e 13 pnod o osionin the period range of engineering intere:
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The high-frequencies are also of importance for synthesizing earthquake ground
motion at regional distances, where substantial seismic energy is recorded in the 1
to 5 Hz range. Once the high-frequency behavior of the slip function has been
quantified from the numerical solutions, the numerical results are combined with
asymptotic results for dynamic cracks, in order to characterize the stress intensity
and energy release rate at the advancing fault edges.

So as to focus our analysis on the geometrical effects associated with the three-
dimensionality of the problem, we employ the approximation that rupture velocity
be a specified constant. The finite difference method used here is, of course, also
well suited to the more complex problem of modeling spontaneous rupture propa-
gation. The method has been applied to the spontaneous rupture problem by Day
(1979, 1982), and Virieux and Madariaga (1982) studied the spontaneous rupture
problem using a similar finite difference method.

THE FAULT MODEL

In the earthquake simulations reported here, we treat faulting as a propagating
shear-stress relaxation which occurs as a consequence of shear failure on a planar
surface. The mathematical formulation follows closely that of equations (2.1) to
(2.13) of Kostrov (1970). Archuleta and Frazier (1978) also present a detailed
exposition of a mathematical model of a propagating shear-stress relaxation.

We will specify the initial state of stress in the medium, its constitutive properties,
the rupture velocity, the limiting edge of the rupture surface, and the friction law to
be satisfied on the rupture surface after failure. Although the velocity of the rupture
front is prescribed, the time of arrest of slip at a given point is not. Instead, the
cessation of slip is a consequence of the nonlinear friction law, and is determined as
a part of the dynamic solution.

Initial conditions and constitutive properties. For time t less than zero, we
assume that an equilibrium state of stress exists with velocity everywhere zero. The
equilibrium configuration is such that the prospective fault plane experiences a
uniform shear traction 7, and compressional normal traction gy.

The fault plane is permitted to fail in shear, but the medium will otherwise be
assumed to be linearly elastic. Since average stress changes associated with faulting
are modest, on the order of a few hundred bars, linear elasticity is a reasonable
model of material behavior away from the immediate zone of faulting.

Growth of the rupture. The rupture surface is assumed to occupy a prescribed
plane with unit normal vector Ai. We specify the growth of the fault surface as a
function of time, rather than determining its evolution from the dynamic solution
via some failure model. The rupture nucleates at a point and expands symmetrically
at a constant, prescribed rupture velocity vg, until it reaches a prescribed rectangular
boundary (Figure 1). 2.(¢) denotes the portion of the plane which has ruptured by
time ¢; w and / denote the width and length of a rectangular fault, and x and Yy are
Cartesian coordinates on the fault plane. Then 2(¢) consists of all points x, y such
that

2%+ y? < vhit?

and
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Two somewhat artificial features of this rupture model require mention. They
are: (1) the instantaneous acceleration of the rupture to its terminal velocity, and
(2) the instantaneous deceleration of rupture velocity to zero along a prescribed
boundary. The former assumption may be a fairly good approximation. There is
both experimental (Wu et al., 1972 Archuleta and Brune, 1975) and theoretical
(Cherry et al., 1976; Das and Aki, 1977a) evidence that rupture velocity can
accelerate very rapidly to its terminal value.

The approximation of abrupt stopping, on the other hand, is difficult to support
experimentally, since ruptures normally propagate completely through laboratory
samples. While the approximation of abrupt stopping may be quite artificial, it is
not precluded by theories of dynamic crack propagation. For example, Husseini et
al. (1975) have shown that a rupture can stop instantaneously when it encounters
jumps in fracture energy on the fault plane. This reflects the fact that a crack edge,

Y

iy /.

Fic. 1. Rupture geometry and coordinate system for the numerical simulations. The shear prestre
is in the x direction on the plane z = 0. Rupture initiates at the origin and expands symmetrically at fix
rupture velocity.

at least in the linearly elastic continuum theory, lacks “inertia.” That is, the stress
immediately ahead of the crack edge depend on rupture velocity, but not on t
time derivatives of rupture velocity (Eshelby, 1969).

The importance of the mode of stopping lies in its consequences for high-frequen
radiation. Madariaga (1977a) has shown that the strongest radiation of high f
quencies is associated with abrupt changes in rupture velocity such as the sudd
stopping at the fault edges in our model. A rupture velocity jump generates f ~2 i
frequency behavior of the far-field displacement spectrum, in contrast to the starti
phase, which (assuming nucleation at a point) generates at most an f° spect
asymptote.

Boundary condition on the fault. On Z(¢), we permit a tangential displacem
discontinuity (slip) s(x, £), and require continuity of the traction vector and of
normal component of displacement. The shear traction on = obeys a simple Coulo
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friction law. The physical requirements of this friction law are: (1) the magnitude of
the shear traction on X is bounded by a prescribed sliding friction value which
depends only on the normal traction, and (2) the shear traction is equal in magnitude
to the sliding friction value and opposite in direction to the slip velocity vector
whenever the latter is nonzero.

The vector 7 denotes the shear traction exerted on the positive side of = by the
negative side (where the direction of 7 is from the negative side of X toward the
positive). We define 1, to be a sliding frictional traction whose direction opposes the
instantaneous slip velocity and whose amplitude is proportional to the normal
traction on X

Tf= —Tf~—7,
TS
where 77is —uqs0n, the product of the normal traction and the coefficient of dynamic
friction. The amplitude of the sliding friction, 7, is presumed to be positive, constant,
and less than the absolute value of the shear prestress 7o, so that a stress drop occurs
at the rupture front. We then define Tc to be the shear traction, at a point on X,
which would be sufficient to enforce continuity of velocity. That is, 7. is the
instantaneous shear traction which would accompany healing, a quantity which can
be readily determined at any time step from the numerical solution. Then the
following boundary condition on T is equivalent to the friction law described in the
ro it |
|

last paragraph
= { o if

Equation (1) ensures that the slip velocity § is nonzero only if the magnitude of 1
would otherwise exceed that of sliding friction, 7.

Note from equation (1) that we do not assume that the frictional stress immedi-
ately increases above the dynamic friction value 7 when a slip velocity zero occurs.
Rather than assuming instantaneous recovery of strength, we let r; continue to
bound the shear stress on the fault, even after the slip velocity goes to zero. This is
in accord with results from laboratory studies of time-dependent rock friction. For
example, Dieterich (1972, 1978) found frictional strength of rock surfaces to be
proportional to the logarithm of their time of contact, with essentially no recovery
of strength occurring during the first 1 sec of contact. Thus, any increase of frictional
strength due to stationary contact should be negligible on the time scale of dynamic
rupture.

Stress-drop scaling. The dynamic stress-drop, A, is defined here as the difference
between the absolute values of shear prestress and sliding frictional stress,

AV

(1

c' Tf.
e| =7

X
-

At =19 — 74,

This quantity is the stress available to accelerate the fault slip, and has also been
termed “effective stress” in the seismological literature (e.g., Brune, 1970). If the
slip direction were constrained to be parallel to the direction of the prestress, then
the dynamic solution would scale directly with the assumed value of Ar, and would
be independent of 7;. This constraint of the slip direction is equivalent to assuming
773> Ar. In the current study, we have made this simplifying assumption so that the
numerical results can be scaled rigorously with Ar. The assumption TF > A7 is
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consistent with laboratory studies of stick-slip, which report fractional stress drops,
At/7o, of a few per cent to a few tenths of per cent (e.g., Byerlee, 1967; Scholz et al.,
1972; Dieterich et al., 1978).

Actually, this simplification does not have a significant effect on the solution
(apart from inhibiting slip reversal as discussed below). It is known, for example,
that the self-similar, expanding elliptical crack exhibits slip which is everywhere
parallel to the prestress direction, even for the case of zero friction (Burridge and
Willis, 1969). For finite faults with low friction, stopping of rupture can introduce a
component of slip perpendicular to the prestress direction. However, Madariaga
(1976) has shown, for the case of a finite circular crack, that this component is quite
small. So, scaling with A7, while rigorous only for 7; > A7, should be a good
approximation even for relatively low values of 7.

Healing. When the slip velocity at a point goes to zero, equation (1) provides the
criterion for whether to permit further slip. Recommencement of slip is prohibited
by equation (1) if such slip (which must be accompanied by a shear traction o
magnitude 7;) would increase the magnitude of the shear traction 7, rather thar
decrease it, since that would violate our physical assumption that the shear tractior
on I opposes the slip velocity.

Although the friction law embodied in equation (1) does not automaticall;
preclude a reversal of sliding direction, a reversal could only occur for very smal
values of sliding friction in this model. We define the overshoot stress as the amoun
by which the shear traction, at a point on =, drops below 7y after sliding ceases. I
order for sliding to reverse, the shear traction would have to drop from the slidin;
friction value to zero, then reverse sign and increase in magnitude back to 7/; so n
sliding reversal will occur unless 7/ is less than half the overshoot stress. Th
numerical results given in the next section show that the overshoot does not excee
about 26 per cent of the dynamic stress drop; therefore, a sliding reversal woul
only occur if the fractional stress drop Ar/To were at least 0.88. Since we hav
assumed 7, >> At (i.e., very small fractional stress drop), sliding reversal does nc
occur in our simulations.

NUMERICAL SOLUTIONS FOR THE FAULT SLIP

Method of solution. The mathemtical model of faulting outlined in the last sectio
poses a three-dimensional, nonlinear, mixed boundary value problem. To determir
the fault slip, this problem is solved numerically using a three-dimensional fini
difference method developed by Cherry (1977), in which explicit time stepping
used to integrate the dynamic solution in time. Equation (1), governing the fau
plane, was discretized in accordance with the method developed by Day (197
Appendix iv).

Description of the calculations. We present slip functions obtained from nume
jcal simulations of four different fault geometries. Each calculation simulates
rectangular fault surface in a uniform whole-space. In each case, rupture initiates
the center of the rectangle, as in Figure 1, and the prestress direction is aligned wi
the long dimension of the fault.

The numerical results have been scaled to represent the following set of physic

parameters

P wave speed, a = 6.0 km/sec

S wave speed, 8 = 3.46 km/sec
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shear modulus, p = 8.24 x 10" dyne/cm
rupture velocity, vy = 3.12 km/sec

dynamic stress drop, At = 100 bars.

Three of the calculations represent a fault length / of 8 km and fault widths w of 1.5,
4, and 8 km, respectively. The fourth calculation was for a fault length of 16 km and
a fault width of 4 km. The solutions may be rescaled to represent a different set of
material and fault parameters, provided Poisson'’s ratio, the fault aspect ratio, and
the ratio vg/B are unchanged. The appropriate scaling relationships have been
summarized by Madariaga (197 6), and we repeat them here for convenience. Assume
that the above values of dynamic stress drop, fault width, shear speed, and shear
modulus are multiplifed by factors Ar’, w’, B’, and #’, respectively. Then, time,
length, stress, and displacement in the numerical solutions are to be multiplied by
scale factors ¢’, x’, ¢’ and u’, respectively

’

(time) t = ﬂ,
B
(length) x ' =w’
(stress) o =Ar’
; Ar'
(displacement) u'=—uw'.
u

In rescaling the numerical solutions, however, consideration must be given to a
hidden length scale in the problem, the finite difference cell dimension. The main
limitation of the finite difference method is that the discretization causes substantial
numerical dispersion of wavelengths shorter than about 6 cell dimensions. Conse-
quently, accuracy is degraded for high-frequency components of the solution. For
these four finite difference calculations, the mesh refinement was sufficient to retain
accuracy for frequency components up to about 5 Hz. Frequencies higher than 5 Hz
have therefore been removed from the solutions using a combination of artificial
viscosity and postprocessing with a low-pass digital filter. This nonphysical cutoff
frequency scales as B/w.

Slip time histories. Figure 2 shows the calculated slip histories for selected points
along the fault length for the square (8 km by 8 km) fault. The final offset is greatest

fault does not).
We can compare the residual slip for the square fault to Neuber’s (1937) static
solution for a circular shear crack in a Poisson solid, for which the slip s is

s(r) = %ﬁ a(l - r*/a??t (2)
Tm 1
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where a is the crack radius and r is the distance to the center of the crack. For the
circular crack, the average static slip, from equation (2), is % times the static slip at
the center. For the square fault calculation, the average static slip is found to be
0.65 times the static slip at the center, which is nearly identical to the circular fault
relationship.

As a reasonable approximation, we might apply equation (2) to the square fault
with the reinterpretation that a is VA/m, where A is the fault area. In that case, the
static offset at the center of the square fault exceeds the prediction of equation (2)
by a factor of 1.26. This “overshoot” of the dynamic solution relative to the static
solution has been discussed for circular faults by Madariaga (1976), Archuleta
(1976), and Das (1980). The value of 1.26 obtained here for the square fault is in
good agreement with their numerical results (which range from 1.20 to 1.27).

y
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Fic. 2. Computed slip time histories along the center line of the square fault plane at several distanc
from the hypocenter. Slip is scaled to represent a dyanmic stress drop of 100 bars and a fault length o

km.

This value of overshoot implies that no reversal in slip direction will occur if t
dynamic frictional traction 7 exceeds about 0.13 A, or half the overshoot stre
Thus, as remarked in the previous section, a slip reversal requires a fractional stre
drop, At/7o, greater than 0.88, which is far greater than those observed in laborate
stick-slip experiments. We emphasize again that this conclusion requires only ¢
assumption that sliding friction is a dissipative process which opposes the slip
does not require an assumption of rapid strength recovery on the fault followin
slip velocity zero.

Figure 3 shows slip histories calculated along the fault length for the case w =
| = 8. The time histories in this case are similar to those in Figure 2, but the
time and static slip are reduced, especially near the center of the fault. Rise t.
and static slip at a point are apparently controlled by proximity of the nearest e
of the fault.

Figure 4 shows slip histories for the case w = 1.5, =8. Again, it is clear that f:
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width controls static amplitude and rise time. Beyond a distance of about one fault
width from the hypocenter, the slip function remains essentially constant in shape
with increasing hypocentral distance. This uniformity of the slip function beyond
one fault width is also apparent in Figure 5 for the case w = 4,1=16.

In Figure 6, the relations between fault width and the static offset are shown in
more detail. Static offset calculated along the fault center line, is plotted for the
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Fic. 3. Computed slip time histories along the center line of a rectangular fault with aspect ratio 2:1.
Scaling is as in Figure 2.
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F1c. 4. Computed slip time histories along the center line of a rectangular fault with aspect ratio 16:3.
Scaling is as in Figure 2.
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cases w = 4 and w = 1.5 (I = 8 in both cases). The horizontal lines show the static
solution for an infinitely long strike-slip fault (Knopoff, 1958). Except near the enc
of the fault, the static slip for the finite length faults is essentially constant along th
fault length and is very well predicted from Knopoff’s static solution. At the cente
of the 4 X 8, 1.5 X 8, and 4 X 16 faults, the static slip exceeds the Knopoff solutior
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Fic. 5. Computed slip time histories along the center line of a rectangular fault with aspect ratio 4
Slip is scaled to represent a dynamic stress drop of 100 bars and a fault length of 16 km.
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F16. 6. Static slip along the center line of the fault (x axis), as a function of distance from
hypocenter. Upper curve 1s for the 4 X 8 km rectangular fault, the lower curve for the 1.5 X 8
rectangular fault. The horizontal lines are Knopoff’s static solution for an infinitely long strike-slip fz

by less than 5 per cent. The “gvershoot” phenomenon, observed for the square a
circular faults, is not significant over most of the length of the long, narrow fau
This result concurs with the numerical results of Archuleta and Day (1980), wh
show overshoot confined to within about one half-width of the end of the fa
Elsewhere, the final shear stress is approximately equal to the sliding frictio
stress.
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For a long, narrow fault model, then, the static stress drop will approximately
equal the dynamic stress drop Ar, since little or no overshoot occurs, and
“undershoot” is not permitted by our model. That is, no physical mechanism has
been incorporated into the model [equation ( 1)] capable of healing the fault at a
stress level higher than the prescribed sliding frictional level. In practice, however,
we have to be cautious in equating static and dynamic stress drops. Seismic estimates
of static stress drop are actually estimates of average static offset divided by gross
fault dimension. If an earthquake leaves unbroken patches, or if some regions heal
at stress levels above the dynamic friction level, then the seismically inferred static
stress drop may be substantially lower than the dynamic stress drop Ar, as demon-
strated by Madariaga (1979). Static stress drop estimates may constitute, in general,
an approximate lower bound on Ar.

Figure 7 shows the relationship between slip rise time and fault width. Rise time
is plotted along the fault center line for three rectangular fault calculations. Rise
time in Figure 7 was defined to be the time required for a point on the fault to attain
90 per cent of its final value of slip. The horizontal lines represent a rise time equal
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FiG. 7. Slip rise time along the center line (x axis) of rectangular faults. Rise time is defined as the
time for slip to reach 90 per cent of its final value. Horizontal lines represent rise time equal to the half-
width divided by the rupture velocity.

to the half-width divided by the rupture velocity. For w = 1.5, [ = 8, the rise time at
first decreases with distance from the hypocenter, then approaches a constant level
of about w/2vr. For w = 4, [ = 16, a constant level of w/2vg is again approached as
hypocentral distance increases. For w = 4, [ = 8, the rise time again decreases with
distance from the hypocenter, but the effects of the end of the fault intervene to
further reduce the rise time before a constant level can be clearly established. These
numerical results predict that a long, narrow fault will have a rise time of roughly
w/2vr over most of its length, with larger values near the hypocenter and lower
values near the ends.

Actually, in these simulations the rupture and shear velocities differ only by about
10 per cent, so Figure 7 could alternatively be interpreted as showing rise time
controlled by 1/8 rather than by 1/vz. We prefer the latter interpretation, as
explained in a later section.

Slip velocities. We turn our attention now to the high frequencies. Here it is
appropriate to focus on the slip velocity function and, particularly, on the peak slip
velocity. Figure 8 shows the slip velocity time histories at selected points along the
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center line of the 4 X 16 km fault model. The slip velocities have been low-pass
filtered to remove frequencies in excess of 5 Hz, which is close to the highest
frequency that can be reliably computed in the finite difference mesh.

Figure 8 shows that the peak slip velocity initially increases with hypocentral
distance. However, the rapid growth in peak slip velocity ceases beyond a hypocen-
tral distance of about one fault width. From then on, the slip velocity function is
nearly uniform along the fault center line. The figure also shows slip velocities
observed at points distributed across the fault width, at a fixed distance of 6 km
along the length of the 4 X 16 km fault. This figure illustrates the near uniformity
of peak slip velocity across the fault width as well as along the fault length, for
hypocentral distances greater than about w. The slight decrease in peak slip velocity
very near the fault edge, evident in this figure, may be due to the slip function rise
time near the edge becoming comparable to the rise time of the 5-Hz low-pass filter.
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Fic. 8. Slip velocity time histories for the 4 X 16 km fault. The time histories have been low-pas:
filtered with a 5-Hz cutoff (corresponding to the limiting frequency for which the numerical method i
accurate). Peak slip velocity is nearly invariant with position, for distance x greater than fault width.

The uniformity of peak slip velocity is further illustrated in Figure 9. The broker
curves represent peak low-passed (5 Hz) slip velocities obtained along the fauls
center line for the two cases w = 1.5, [ = 8 and w = 4, [ = 16 km, respectively. Ir
both cases, the peak slip velocity first increases rapidly with hypocentral distance
then quickly settles to a uniform level when the hypocentral distance exceeds w
The results in Figure 9 will be further analyzed in the next section.

ANALYSIS OF THE SLIP FUNCTION

The velocity singularity. We can interpret the numerical results for peak slij
velocity by means of the closed-form analytic solution of Kostrov (1964) for ai
expanding circular crack. The analytic solution for the velocity discontinuity s on :
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circular crack expanding at a uniform rupture velocity is

§ = CEBM—H(T) (3)
B JT(T + 2r/vg)
where T is the reduced time (time minus rupture arrival time), r is the distance (x2
+ ¥°)* from the center of the crack to the observation point, H is the unit step
function, and C is a constant which equals 0.81 for a Poisson’s ratio of 0.25 and
rupture velocity of 0.9 8 (Dahlen, 1974). This solution is singular at the rupture
arrival time (except at the hypocenter), and approaches C(A7/u)B for T large
compared to the rupture arrival time. In order to compare this solution to the
numerical solutions for finite width faults, we approximate the effect of a low-pass

! I i I | 1T I

Circular

Peak Slip Velocity (m/s)

| | l 1 1 | i
0 ! 2 3 4 5 © 7 8
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F1G. 9. Peak slip velocity as a function of hypocentral distance along the fault center line (x axis).
The dashed curves represent the numerical solutions for 1.5 X 8 km and 4 X 16 km rectangular faults,
respectively. The solid curve represents Kostrov’s analytical solution for an expanding circular crack.
Horizontal lines approximate Kostrov’s solution evaluated at radius r = w. Slip velocities for the
numerical solutions were digitally low-pass filtered with a 5-Hz cutoff, and the analytical solution was
analytically low-passed by convolution with a boxear function of width 1/£.(f. = 5 Hz).

filter by averaging the analytic solution [equation (3)] over a “cutoff” period 1/f..
The resulting expression for peak slip velocity s on the circular crack is

= C%ﬁ(zrfc/w 1) )

which, for f. >> vr/r, is proportional to r*. That is, in the absence of edge effects
(and nonlinearities), peak slip velocity would increase as the square root of distance
from the point of rupture.

Equation 4, with f. equal to 5 Hz, is plotted as a solid curve in Figure 9. Comparing
this curve with the peak velocity curves from the finite difference fault simulations,
we see that edge effects do not act to modify the peak velocity within a hypocentral
distance of approximately one fault width. Up to that distance, the behavior of peak
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slip velocity closely follows that of Kostrov’s expanding circular crack solutic
increasing as r*. The influence of the fault edges is to terminate this growth of pe:
slip velocity at a hypocentral distance of approximately r = w. Thus, the numeric
solutions predict that, over most of its length, a long, narrow fault will have a pe:
slip velocity, after low-pass filtering with cutoff frequency f., of approximately

In (5) we have assumed f. > vg/w and have introduced the approximation C
vr/B, which is accurate within about 10 per cent for all subshear rupture velociti
(Dahlen, 1974). Equation (5) is shown by horizontal lines on Figure 9. For this moc
of faulting, then, peak (low-passed) slip velocity is proportional to dynamic stre
drop Ar, the square root of rupture velocity, and the square root of fault width.

The above interpretation of the numerical solutions permits us to “undo” t
filtering effect of the numerical scheme and characterize the slip velocity singular
at the leading edge of a long, narrow rupture. To simplify the discussion, we take
> w, so that we can ignore the rupture front curvature across the fault width, a
so that the rupture front represents mode II (in-plane shear) crack extension. }
expect a singularity of the form

§ ~ V(vgt — x) *H(vrt — x). {

This singular form is a universal property of subshear velocity crack propagati
(Freund and Clifton, 1974; Freund, 1979). In equation (6), V is the velocity intensi
and we can estimate it from equation (5). Recalling that § is approximately
averaged over time 1/f., and using equation (6), we obtain the expression

w Ar
V= — — Ur

2 p

for the velocity intensity. Thus, the model predicts a velocity intensity proportiol
to the square root of fault width and also proportional to rupture velocity. T
result contrasts with two-dimensional crack solutions, in which the velocity intens
is proportional to the square root of fault length.

In addition, we can use this result to estimate the dynamic stress intensity fac
K at the advancing edges of the fault. The shear stress change near the edge,
0, has the asymptotic form (Freund and Clifton, 1974)

r— 10~ K(x — vet) 1H(x— vrt).
For a mode II crack, K can be obtained from V (Freund, 1979)

K - 2,(1.52 R(UR)
v’ (L —vr’/B*)

where R is the Rayleigh function

wo-[ (-5 - (-5
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From (7) and (9), we obtain the approximation

5 B\ R(u)
K= (‘) [ 1o

so that the dynamic stress intensity factor is proportional to the square root of the
fault width and is independent of the length of rupture. This value of K happens to
be very close to the dynamic stress intensity factor for a two-dimensional in-plane
shear crack of length w; in fact, the difference (about 8 per cent at vg = 0.98) is not
significant in view of the approximate nature of our analysis.

Finally, from equation (10) we can determine the energy flux into the propagating
rupture front, the so-called energy release rate G. G is the energy absorbed per unit
area by the advancing crack edge, and is given by (Freund, 1972)

m
G_Z_KV’

Ur

from which we obtain

G= —

2 2
%’(1”> Rle) A (1)

vr) (1 —vr*/B%

| —==— Numerical Solution
——— Closed-Form Approximation

8
w

=

b .

q (Equation 12)
a2 y
N
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o Slip Direction
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F1Gc. 10. Comparison of numerical solution and closed-form approximation [equation (12)] for the
static slip on a fault with aspect ratio 2:1.

That is, for a long, narrow fault, the energy release rate is proportional to the fault
width, rather than fault length.

The static slip. From Figure 6, it was observed that the final slip for the
rectangular fault model is very close to Knopoff’s two-dimensional (antiplane) static
solution, except near the ends of the fault. Comparing the two cases shown in that
figure, it is evident that the length of the end region is proportional to fault width,
rather than fault length. The greatest deviation from the two-dimensional solution
occurs within a distance w/2 of the ends. We use these observations to construct an
approximate expression which summarizes the numerical results.

Figure 10 shows in more detail the numerical results for static slip on the fault
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with aspect ratio 2. Four profiles across the narrow dimension of the fault are shov
as dashed curves. The uppermost solid curve is Knopoff’s static solution for t
infinitely long (in the x direction) fault of width w

274
o]
I w

For points more than half a fault width away from the end of the fault, th
expression is a reasonable approximation to the numerical solution; for x = 0 and
= 0.5w, the agreement is within about 10 per cent over most of the fault widt
To modify this expression to account for end effects, we are motivated by the fa
that, very near the fault ends, plane-strain conditions should be approximate
Therefore, guided by the two-dimensional static solution of Starr (1928) for a fini

in-plane shear crack, and the observation that the end region is of length appro:
mately w/2, we try the approximation

24
w21 ()] oo :
I w

where £(x) is 1 for points farther than w/2 from the ends, and otherwise is t
normalized distance to the end of the fault

¢x) = li%xl if |l—2x|<w

1 if |1 2|z w.

The approximation (12) is simply that the static slip has the value Ar/u w along t
center line, with an elliptical cross-section across the width, multiplied by a quart
ellipse taper near each end. As Figure 10 indicates, equation (12) represents t
numerical solutions fairly well over the whole length and width of the fault, althou
somewhat less well near the end.

To summarize, we find that final slip for a long, narrow fault is proportional
fault width rather than fault length. The final slip is well approximated by Knopof
solution, except near the ends. The extent of this end region is also proportional
fault width, not length. Equation (12) represents reasonably well the overall behavi
of the static offset.

The slip rise time. The approximate expressions deduced above for the s
velocity singularity and static slip can be used to derive an approximate expressi
for the rise time T's. Integrating the slip velocity singularity [equations (6) and (’
and equating the resulting slip to the static slip [equation (12)] gives the followi
prediction for the rise time

TR=2w [1—<§> }(2—9& (
Ur w

assuming x >> w. This derivation of equation (13) assumes that the slip velocity
a point follows equation (6) until the static slip value is reached, then slip terminat
abruptly. This is an oversimplification of the actual slip function, as Figure 8 shos
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However, the resulting expression for Tk is in very good agreement with the
numerical result, shown in Figure 7, that the rise time along the fault center line ( y
= 0) approaches w/2vx for points more than one fault width away from the
hypocenter. Furthermore, the numerical result that Tk increases with decreasing
hypocentral distance for x < w, which is evident in Figure 7, can be interpreted in
the same manner. For x < w, however, equation (6) should be replaced by equation
(3) to estimate the rise time.

It is perhaps surprising that equation (13) involves the rupture velocity, rather
than the shear-wave velocity, since the arrival of shear waves diffracted from the
long edges of the fault might be expected to control the rise time at a point on the
fault. In fact, both Day (1979) and Das (1981) have adequately explained rise times
for numerical models of rectangular faults on the basis of diffracted shear-wave
arrivals, predicting rise time proportional to 1/8. Since the shear and rupture
velocities differ by only 10 per cent or so in our simulations, we could not distinguish
between a 1/8 and 1/vr dependence for Tk on the basis of these numerical results
alone. Instead, the proportionality of rise time to the reciprocal of rupture velocity
in equation (13) follows directly from the property that the velocity intensity at the
leading edge of the fault is proportional to vg. This proportionality to v is a general
property of dynamic cracks running at sub-Rayleigh velocity (see, e.g., Freund,
1976). Therfore, it will take longer for a slow-running crack to reach its static slip
value than for a fast-running crack to do so (recall that negligible static overshoot
was found for the long, narrow faults and that static shear stress is required by the
model to be less than or equal to 7/). The shear-wave diffraction effect may act to
retard the slip velocity below that given by (6) and (7), but not to increase it. For
our earthquake model, then, an expression such as equation (13) is probably a more
appropriate approximation to the rise time than would be obtained with B in place
of vr. The conclusion might be different if some mechanism, such as velocity-
dependent friction (Dieterich, 1978) were incorporated into the fault model to permit
healing to occur at a stress level substantially higher than 7r. Furthermore, we
reemphasize that the generality of equation (13) has not been demonstrated numer-
ically; we have compared (13) to numerical solutions for only one value of rupture
velocity.

SUMMARY AND Discussion

The approximate behavior of the slip function for a long, narrow fault, as deduced
from the forgoing analysis of the numerical solutions, is summarized schematically
in Figure 11. Near the hypocenter, the slip function initially resembles Kostrov’s
solution, equation (3), in which the velocity singularity grows as the square root of
hypocentral distance. For x (distance along the fault length) greater than the fault
width w, this growth of the velocity singularity ceases, and the slip function is then
nearly invariant with distance in the x direction, except near the ends.

In this “steady-state” regime, x > w, both rise time and static slip are proportional
to w, and the advancing crack edges have velocity singularities proportional to

w. Slip nearly ceases at a given point after the crack edge has advanced a distance
of roughly one half-width past the point. The slip-velocity time function can be
approximated by

§= g vﬁ% T7[H(T)- H(T - Tx)]. (14)

In equation (14), T is reduced time t — vg/r, and Tk is the slip rise time as given by
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equation (13). This approximation is sketched (for the case y = 0) in Figure 12 alo
with the corresponding shear-stress singularity. Also shown for comparison in Figu
12 is a numerical solution for slip velocity (point E of Figure 8).

The low-frequency characteristics obtained here for the slip function, that is, ri
time and static slip, are similar to those inferred from similar calculations |
Archuleta and Day (1980) and from a spontaneous-rupture numerical model by D
(1981). The mesh refinement used to obtain the numerical solutions in this stuc
however, has permitted observation of some previously unresolved high-frequen

Rupture
s wid % !
t<-- idth= Velocity
Ur Width=w = Ug

w | =t  _
e
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1 |
' |
: :
| |
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SLIP | !
—
}
L 1 J
-2 0 /2

Distance (x)

Fic. 11. Sketch summarizing the approximate behavior of the slip function for long, narrow faults. /
a time greater than that required for the rupture to cross the fault width (w/vx), slip is concentrated c
two patches, each approximately one half-width long, moving away from the hypocenter in opposi
directions. The shape of slip function then remains nearly invariant as these patches propagate along tt
fault length. In this steady-state regime, the static slip and rise time are proportional to w, and the sl
velocity has a square root singularity with intensity proportional to fz;)r .

characteristics of the solution, as well. These high-frequency slip characteristic
specifically the strength of the velocity and stress singularities at the leading edg
of the fault, are of particular importance for understanding the radiation of higl
frequency seismic energy. For example, Madariaga (1977a) has shown that “the hig
frequencies originate from the stress and slip velocity concentrations in the vicinit
of the fault’s edges.” Frequencies in excess of 1 Hz are an important component
the strong ground motion recorded in the immediate vicinity of earthquakes, an
are also of importance for understanding earthquake ground motion at region:
distances, where substantial seismic energy is observed in the 1- to 5-Hz range.
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We first consider some implications of the dynamic solutions for kinematic
modeling procedures used to predict ground motion time histories. An assumption
commonly made in kinematic modeling of earthquake ground motion is that the
source can be represented by a uniform dislocation, that is, a slip function which is
uniform in its amplitude and its time dependence over the entire fault plane (apart
from a time delay associated with the rupture arrival time). Usually the slip function
Is assumed to have a simple ramp time history, i.e., constant slip velocity over some
specified rise time. We focus for now on the high frequencies radiated from the
leading edge of the fault after it has propagated more than a fault width from the
hypocenter. In this case, equation (14) is an appropriate representation of the slip

SLIP VELOCITY

5= /W AT 1%
S ?UR TT

~—— numerical solution

RISE TIME

[~ = L
TR ZUR

Slip Velocity

B Rivg) -2
[ T—Tf = [-\/E; URW (I'URZW AT] (-T)

l STRESS CONCENTRATION
=—=22 LUNLENIRATION

e

Shear Stress

Tf -———
REDUCED TIME (T-= f-x/vR)
Fic. 12. Sketch of a closed-form approximation for the slip vélocity time history [equation ( 14)] at y

=0, x>, compared to a corresponding numerical solution (point E of Figure 8). Also sketched is the
corresponding approximation derived for the shear-stress singularity [equations (8) and 91.

equation (14),
This spectral comparison between the ramp-function representation and the
dynamic solution may provide a physical basis for a result obtained by Del Mar
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Technical Associates (1979). They modeled the 1966 Parkfield earthquake using
uniform-dislocation earthquake model with a ramp-slip function, attempting to -
spectral characteristics of the ground motion recorded at the five accelerograj
stations of the Chalome-Shandon array. They reported difficulty in matchi
observed response spectra over a broad period range with this slip function; in ord
to fit recorded short-period spectral levels of ground motion, it was necessary
tolerate a large overestimate at long periods. This result is in accord with o
prediction that the ramp-function earthquake representation is relatively deficie
in high frequencies.

Of course, a ramp function suitably scaled, might be adequate for modeling grour
motion over a narrow frequency band. As an example, Bouchon (1979) successful
synthesized the velocity and displacement pulses recorded for the Parkfield event
station 2, using a uniform-slip function with a ramp-time history. In this ca:
however, the predominant period of the waveforms being modeled was several tim
greater than the assumed rise time of the ramp.

The dynamic solutions reveal a second difficulty with uniform-dislocation kin
matic models, this one involving the starting phase radiated from the hypocent
when rupture initiates. We have seen that the ramp function is a poor representati
of the slip function for the dynamic solution at points well removed from t
hypocenter. It is tempting to try to retain the uniform-dislocation approximatic
but alter the time function to resemble the singular behavior of the dynamic soluti
in the “steady-state” regime x >> w. Unfortunately, if the time function of a unifor:
dislocation model is chosen to match the dynamic solution at points far from t
hypocenter [i.e., replace the ramp function by an expression such as (14)], then t
starting phase predicted for the uniform dislocation will be much larger than th
for the dynamic model. To see this, we use the expression derived by Richar
(1973) for the first-motion approximation to the shear-wave acceleration #s due
an expanding circular crack

. CUR2 A‘r
s Q - -
b=2 g gy ¢ RIB) (

where # contains the double-couple radiation pattern, 4 is the angle formed at t
hypocenter by the fault normal and the receiver direction, and R is the hypocent:
distance to the receiver. We will also use the corresponding expression for
expanding, uniform, circular dislocation

UR2

U=2 P RA = o/’ 0)

where s(¢) is the assumed slip velocity time function for the uniform dislocatic
Equation (16) can be deduced from Savage (1966). If, in a uniform-dislocati
model, we choose s in accordance with equation (14), equation (16) implies that t
acceleration first-motion will have a T* singularity, whereas the dynamic soluti
for the initiation phase, equation (15), gives only a step discontinuity for .
quantify further the effect of the uniform-dislocation approximation in this ca
assuming a band-limited observation with cutoff frequency f., we substitute equati
(14) into equation (16), average over a period 1/f., and take the ratio of (16) to (1
The result is that the uniform dislocation yields a starting acceleration phase whi
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Square root of fault width, but independent of rupture length.
Similarly, two dimensional analytical and numerical solutions imply that the

function. The actual effect of ductile behavior on the slip function is unknown, and
this question deserves further study, including dynamic simulations which incorpo-
rate appropriate nonlinear material models,
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